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Abstract- For adhesively bonded double-lap joints with an arbitrarily nonlinear shear stress-strain
property, a simple formula is developed for predicting the bond shear strength developable between
the adherends for the cohesive shear failure mode. In this formula, the bond shear strength is
characterized by the maximum shear strain energy density of the adhesive. The thermal mismatch
effect is highlighted in terms of reducing the bond shear strength for balanced joints, and in terms
of either decreasing or increasing the bond shear strength for the stiffness imbalanced joints.

I. INTRODUCTION

Adhesive bonded joints are increasingly being used in metal and composite structures in
aerospace and automotive industries. Unlike bolted, riveted or other types of mechanically
fastened joints, the loads acting on the adhesive bonded joints are transferred through the
adhesive mainly in shear in certain circumstances. Thus, prediction of the bond shear
strength, especially with a simple and efficient formula, plays an important role at the
preliminary design stage. There are various types of adhesive bonded joints, e.g. single-lap
joints, double-lap joints, single-strap joints, double-strap joints, scarf joints, stepped joints
and tapered joints, etc. In this study, our attention will be focused on the prediction of the
bond shear strength for adhesive bonded double-lap joints. Various theoretical analyses
have been given by many previous researchers. The pioneer works by Volkersen (1938) for
double-lap joints and by Goland and Reissner (1944) for single-lap joints provided a basic
understanding of the qualitative behavior of the joints under tensile loads. Hart-Smith
(1973) studied adhesive bonded double-lap joints using elastic-plastic analytical techniques.
Explicit solutions obtained include sufficiently simple formulas for predicting the shear
bond strength and the plastic zone length. It is shown that for a given double-lap joint
with a particular geometric configuration and specified material properties including ideal
elastic-plastic or bi-elastic adhesives, the maximum bond shear strength developable
between specified adherends can be characterized by the adhesive strain energy in shear per
unit bonded area. Hart-Smith's formula is limited to the elastic-plastic and bi-elastic
adhesive models. Similarly, ESDU (1979) pointed out that the precise shape of the shear
stress-strain curve has no effect on the limiting joint strength, and can affect only the
adhesive shear stress distribution along the overlap. Once again, a particular adhesive
model is utilized in ESDU's analysis.

The simple formula of the bond shear strength provides an efficient tool for designing
bonded joints [see e.g. Thrall (1979), Jones et ai, (1993)], and bonded repairs [see e.g. Hart­
Smith (1988), Baker and Jones (1988)], etc.

In this study an arbitrary shear stress-strain model is used as a basis for developing
the formula of the bond shear strength. In this case, closed-form solutions for the shear
strain and stress distribution are mathematically intractable. However, the bond shear
strength can be determined without completely solving the governing equation. It is shown
that bond shear strengths can be characterized by the maximum strain energy density
in shear for the adhesive. The formula of the bond shear strength is also presented to
include the thermal mismatch effect between the thermal expansion coefficients of the
two adherends.
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2. PROBLEM FORMULATION

Consider a symmetric adhesive bonded double-lap joint, as shown in Fig. 1, where I is
the length of the overlap and x is measured from the middle point of the overlap. The inner
adherend is assumed to be subjected to tensile load P at x 0.5/, and the outer adherends
are loaded with 0.5P at x -0.5/. To determine the ultimate load or the bond shear
strength P, the shear lag model is used by neglecting the transverse deflection. In the shear
lag model the longitudinal displacements for the adherends are assumed to be constant
across the adherend thickness. Using the symmetric condition, the longitudinal equilibrium
equations for the outer and inner adherends can be written as

dTo dT
-d+.=0, -'-2.=0

x dx '
(1)

where To and Tj denote the longitudinal forces acting on the outer and inner adherends. r
is the shear stress in the adhesive acting on both adherends, and is assumed to be constant
across the bondline thickness.

The longitudinal forces can be expressed in terms of the longitudinal displacements Uo

and Uj as follows

(2)

where Eo and E; are the Young's moduli of the outer and inner adherends; to and t; denote
the thickness of the outer and inner adherends; Uo and Uj are the longitudinal displacements
of the outer and inner adherends.

As an approximation, the adhesive shear strain is assumed to be constant through the
thickness (Carpenter, 1991) and is given by
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Fig. 1. Geometry and notation for adhesive bonded double-lap joint.
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Uj-Uoy=-­
t

where t is the bondline thickness.
Substituting eqns (2) into eqns (1) yields
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(3)

(4)

(5)

and using eqns (3), (4) and (5) can be rewritten in terms of the shear strain y as follows:

(6)

where

(7)

Equation (6) is a second-order differential equation of the shear strain y. It is mathematically
tractable only when the shear stress of the adhesive '0 is a simple function of the shear strain
y, for example, when the shear stress is a linear function of the shear strain. However, eqn
(6) does not permit a general closed-form solution when the shear stress-strain behavior of
the adhesive is assumed to take the following form

'0 = r(y), (8)

where r(y) is an arbitrary function of y, see Fig. 2(a), and could be the shear stress-strain
curve of the adhesive measured with the thick adherend test specimen (Krieger, 1988).
Experiments show that r(y) could be rate-dependent, temperature-dependent and in situ
environment-dependent, etc (Jones et at., 1993).

Substituting eqn (8) into (6) yields

(9)

which is a nonlinear second-order differential equation of the shear strain y and does not
permit a closed-form solution for y. However, for some special cases of the shear stress­
strain curves of the adhesives, closed-form solutions are tractable. Hart-Smith (1973)
discussed the following two special types of shear stress-strain behaviors.

(a) Ideal elastic-plastic stress-strain behavior in shear for the adhesive, namely,

{
GY Y < Ye

'0-

r p Ye ~ Y ~ Yp

(10)

where Ye, YP and G are chosen in such a way that the maximum strain energy density in
shear computed using the ideal elastic-plastic model is identical to that computed using the
measured shear stress-strain curve for the adhesive [see Fig. 2(a)].

(b) Bi-elastic stress-strain behavior in shear for the adhesive, namely,
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Fig. 2. Stress-strain properties in shear for adhesive.

(11)

where "Ye, "Y p , Geand Gp are chosen in the same way as that used for the elastic-plastic model
[see Fig. 2(a)].

Another adhesive model used in analysing the inelastic shear stress and strain in the
adhesive bonded lap joints loaded in tension or shear (ESDU, 1979) is shown in Fig. 2(b),
and the following expressions are assumed to represent the shear stress-strain properties
of the adhesive

(12)

where

(13)

Equations (12) are chosen for convenience of calculation (ESDU, 1979).
The boundary conditions at both ends of the overlap, as shown in Fig. I, are given by
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du /
Et-' = 0 when x = --
II dx 2

du /
Et-' = P when x = -2'
"dx

(14a)

(14b)

Noting eqn (3), the above boundary conditions can be rewritten in terms of the shear strain
y as follows

dy P /
- when x = --

dx - - 2Eotot 2 (15a)

dy P
---
dx EJJ

/
when x = 2' (15b)

Evidently a general closed-form solution for eqn (9) and the related boundary conditions
(15) are intractable. However, a simple explicit expression for the ultimate load or bond
shear strength P could be determined without obtaining the complete solution for eqns (9)
and (15). This simple formula plays an important role in the preliminary design of the
double-lap joints.

3. DETERMINAnON OF BOND SHEAR STRENGTH P

To determine the bond shear strength P for the double-lap joints, we need to integrate
eqn (9). For an arbitrary shear stress-strain property, it is difficult to obtain a math­
ematically tractable solution for y by following the same procedure used in Hart-Smith
(1973). However, we can integrate eqn (9) for determining the bond shear strength or the
ultimate load P without attaining the detailed shear strain and stress distribution. By
multiplying 2(dyjdx) on both sides ofeqn (9), we have

which can be rewritten as

d (dy)2 '2 dy- - -21e r(y)- = 0
dx dx dx

or in the form of a complete differentiation

(
dy)2

d dx -2Ah(y)dy = O.

(16)

(17)

(18)

Evidently, eqn (18) is valid for any point in the overlap (namely, -0.5/ ~ x ~ 0.5/).
Integration of eqn (18) with respect to dy jdx for the first term and with respect to y for the
second term yields

or

(
d )2IdYld< r'
d: 0 . -222

J:r(Y)dY=0 (19)
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(
d

y )2 = 2-12 rYr(y)dy.
dx Jo (20)

It is worth pointing out that it is assumed that there is no initial shear strain or shear
stress. Similar to eqn (18), eqn (20) holds for any point in the overlap of the joint, namely,
-0.5! ~ x ~ 0.5!. Equation (20) can be physically interpreted as: the slope of the shear
strain distribution at any point is related to the strain energy density in shear computed
using the shear strain at that point. Noting eqn (2), eqn (20) can be written as

(21)

Equation (21) reveals that the difference between the average longitudinal stresses acting
on the inner and outer adherends at any point is related to the shear strain density computed
using the shear strain at that point. Although eqn (21) cannot give us a closed-form solution
for y, it can be used to determine the ultimate load P. As shown in Fig. 1, To = 0 and
T j = P at x = 0.5!; To = 0.5P and T j = 0 at x = -0.5!. When the load P at one end of the
overlap (x = 0.5!) is transferred through the adhesive to the other end of the overlap
(x = - 0.5!), To increases from a to 0.5P and T j decreases from P to O. Evidently y and
d')'/dx attain their maximum value at either the left end (x = -0.5!) or the right end
(x = 0.5!) of the overlap, namely,

(~)2 = 2-12rl'm" r(y)dr when thejoint fails atx = -0.5! (22)
2Eo to t Jo

or

(
P )2 f;''''"'-E.. = 2,,1,2 r(r)dr when thejointfailsatx = 0.5!.
J,t 0

Equations (22) and (23) can be rearranged in the following form

(23)

P = 2Eotot 2},2 J:"m r(y)d}' when thejoint fails atx = -0.5! (24)

or

P = E;t;t 2,,1,2 J:m", r(y)dr whenthejointfailsatx = 0.5!. (25)

The maximum load Pmax is the lesser one of the two values for P computed using eqns (24)
and (25).

Case I
For unbalanced double-lap joints (i.e. 2Eoto "# Ejt j ): the shear strain may attain its

maximum value at either one end or the other of the overlap.

(a) When 2Eoto ~ Ejt j , the joint fails at x = 0.5! and the bond shear strength takes the
form
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[Yma>
Pmax = E;l;t 2A.2 Jo r(y)dy.
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(26)

(b) When 2Eoto ~ Eiti, the joint fails at x = -0,5/ and the bond shear strength is given
by

(27)

ease 2
For balanced double-lap joints (i.e. 2Eoto = Eiti): The joint fails simultaneously at

both ends of the overlap and the maximum load takes the following form

(28)

Equations (26)-(28) reveal that the maximum load P can be characterized in terms of the
maximum strain energy density in shear obtainable in the adhesive, The maximum strain
energy density in shear can be computed using the shear stress-strain data measured with
the thick adherend test. The effect of stiffness imbalance on the bond shear strength can be
investigated through introducing the following notation

Pmax

kstiffness = --;::::======== (29)

Noting eqns (7), (26) and (27), eqn (29) can be expressed in terms of the relative stiffness of
the adherends as follows:

(30)

Equations (29) and (30) indicate the effect of changing the inner adherend stiffness when
prescribing the stiffness of the outer adherends. The effect of the stiffness imbalance on the
nondimensional bond shear strength is plotted in Fig. 3. Apparently for the stiffness
balanced joints (namely 2Eoto = Eiti), shear failure happens at both ends of the overlap and
k'tiffness attains its maximum value (i.e. kstiffness = 1.0), Any imbalance in stiffness tends to
cause shear failure at one end of the overlap and thus decreases the bond shear strength.

It is worth noting that Hart-Smith (1973) developed the full solutions for the shear
stress in the joints using both ideal elastic-plastic and bi-elastic behaviors of the adhesive.
The formulas for bond shear strength were finally given as follows:
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Fig. 3. Effect of stiffness imbalance on nondimensional bond shear strength with prescribed outer adherend
stiffness (i.e. 2EoIo -= constant).

for ideal elastic-plastic adhesive:

(31 )

and for bi-elastic adhesive:

(32)

As shown in Fig. 2(a), the terms 1'p(O.5Ye+ Yp) and O.5(Gey; +GpY~)+ GeYeYpin eqns (31) and
(32) represent the area of the stress-strain curves for ideal elastic-plastic and bi-elastic
adhesive models, and are identical to the term S~m"1'(y)dy in eqn (28). Thus it is evident that
the bond shear strength formula in eqn (28) for the joints with an arbitrary adhesive shear
property is an extension of Hart-Smith's formula in eqns (31) or (32).

4. THERMAL MISMATCH

Metal and composite adherends need to be frequently bonded together to reduce the
stress concentration associated with bolt holes etc. Due to the difference in their thermal
expansion coefficients, the normally high shear bond strength may be decreased, for
example, in graphite-epoxy-to-aluminum bonding or repairing [see e.g. Hart-Smith
(1988) and Baker and Jones (1988)]. In this section the thermal mismatch effect will be
discussed.

To understand the thermal mismatch effect, let us assume that there is a difference AT
between the initial reference temperature Tirer and the final reference temperature Trrer, thus
the constitutive relations in eqns (2) need to be revised as:

(33)

where (Xi and (xo are the coefficients of thermal expansion for the inner and outer adherends.
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It is assumed that ai is not equal to ao. By including the temperature effect in the shear
stress-strain behaviors, the governing equation in eqn (9) may be modified as

(34)

where T ranges from lirer to Trrer, and is assumed to be constant across the overlap. The
shear stress-strain behavior for the adhesive varies at different temperatures as shown in
Fig. 4 (Hart-Smith, 1973).

Similar to the preceding section, integration of eqn (33) yields

(
dy)21 (dy)21 iYfin

.,- - - = 2..1. 2 r(y, T)dy
dx final dx initial }'initial

(35)

where Yinitial and Yfinal are the shear strain at the initial state and the final state; dyjdxlinitia'
and dyjdx Ifinal are the slope of the shear strain at the initial and the final state. Now let us
discuss the following two cases.

Case I
In this case, the temperature difference !iTer is defined as the difference between the

adhesive cure temperature T eure and the room temperature T room introduced when cooling
down in the autoclave. It is assumed that the adhesive cure temperature is a strain-free
temperature and there is no mechanical loads acting on the joint. Using eqn (3), eqn (35)
can be written as

(36)

When Yfinal attains its maximum value Ymm the allowable temperature difference !iT;;lowable
for breaking the joint apart when cooling down is given by

(37)

As an approximation in eqn (37), the room temperature T room can be used to replace T.

Case 2
In this case, the temperature difference !iTeo is the difference between the room tem­

perature T room and the operating temperature Top. The joint is assumed to be subject to

Low temperature

Room temperature

High temperature

0..- • 'Y

Fig. 4. Shear stress-strain behaviors at different temperatures.
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tensile or compressive load P (in case of compression, it is assumed that no buckling
happens). The room temperature is assumed to be the strain-free reference temperature.

For this case, the boundary conditions in eqns (12) need to be revised to include the
thermal mismatch effect as follows:

when x = -0.5/ (38a)

or in terms of the shear strain y

dy P

dy P
dx= EJi{

(38b)

(39a)

(39b)

When I'final attains its maximum value Ymax> the cohesive shear failure happens in the adhesive.
Because Y and dy/dx takes its maximum value at either the x = -0.5/ end or the x = 0.5/
end, thus using the modified boundary conditions (39) and eqn (35), the conditions of the
adhesive cohesive failure are given by:
at the end of x = -0.5/

(40a)

or at the end of x = 0.5/

(40b)

Hence when one of the equations in (40) holds, the cohesive shear failure happens in the
adhesive.

The bond shear strength of the joints with thermal mismatch effect is given by the
lesser P from the following equations

(41a)

or

(41b)

For balanced joints, e.g. 2Eoto = EJj the bond shear strength takes the following simple
form
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(42)

In eqns (41) and (42), the operating temperature is used in r(y, 1). This means that the shear
stress-strain curve at the operating temperature is utilized in computing the maximum
strain energy density in shear for the adhesive.

The effect of thermal mismatch and the stiffness imbalance on the bond shear strength
can be highlighted through introducing the following notation

and noting eqn (29), eqns (40) can be expressed as follows:

(43)

I
kstjffness +ktemp = ± j2 (44a)

or

Ejli I (Ejli)
kS'iffness - 2E t k,emp = ± M 2£ t

00 y2 00

(44b)

In eqns (44) the stiffness of the outer adherends is prescribed as a constant while the inner
adherend stiffness varies. To show the effect of the thermal mismatch and the stiffness
imbalance, the following illustrative examples are discussed:

(a) for the stiffness balanced joints with 2Eoto = E,ti, eqns (44) are replaced by

kstiffness + ktemp = ± I, or kstiffness - k,emp = ± 1.0,

(b) for the stiffness imbalanced joints with Eoto = Eitj, eqns (44) are

kstiffness+ktemp = ± 1.225, or kstjffness-0.5k,emp = ±0.612,

(c) for the stiffness imbalanced joints with 4Eoto = Ejti eqns (44) are given by

kstiffness +ktemp = ± 0.866, or kstiffness - 2k,emp = ± 1.732.

(45)

(46)

(47)

Equations (45)-(47) define the failure chart for the joints as shown in Fig. 5. All the lines
with negative slopes are drawn using the first equations in (45), (46) and (47), while those
with positive slopes are plotted using the second equations. As the first and the second
equations in (45)-(47) give the left end and the right end failure limits, respectively, the
negative-sloped and positive-sloped lines are associated with the left end and the right end
failure. Apparently for the stiffness balanced joints (namely 2Eoto = Ejti), the failure chart
is in a regular diamond shape, and the effect of the thermal mismatch is highlighted in
terms of reducing the nondimensional bond shear strength ks'iffneSS" For the stiffness imbal­
anced joints with Eoto = EJj and 4Eoto = EJi, the failure charts are in twisted diamond
shapes. Variation in the nondimensional thermal mismatch ktemp can either decrease or
increase the nondimensional bond shear strength kstiffneSS" For example, for Eoto = Ejti, kstiffness
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Fig. 5. Failure chart for double-lap joints with the stiffness imbalance and the thermal mismatch when prescribing
the outer adherend stiffness (i.e. 2£,,10 = constant).

increases when k temp ranges from 0.0 to 0.408 and decreases when k temp is larger than 0.408,
while the failure location transfers from the left end to the right end of the overlap. This
phenomena can be physically described as: when the operating temperature of the joints is
close to the room temperature, kstiffness becomes larger as the operating temperature is
elevated; when the operating temperature is sufficiently higher than the room, kstiffness is
decreased as the operating temperature is elevated.

5. CONCLUDING REMARKS

The present investigation includes the following salient points. (a) A direct integration
method is proposed for deriving a simple and efficient formula for predicting bond shear
strength for adhesively bonded double-lap joints with an arbitrarily nonlinear shear stress­
strain property. (b) In this formula, the bond shear strength is characterized in terms of the
maximum shear strain energy density in the adhesive during the load application. (c) The
thermal mismatch in the joints leads to a reduction of the bond shear strength for the
balanced joints and can either decrease or increase the bond shear strength for the stiffness
imbalanced joints.
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